Image Compressive Sensing Recovery Using Adaptively Learned Sparsifying Basis via L0 Minimization
نویسندگان
چکیده
Frommany fewer acquired measurements than suggested by the Nyquist sampling theory, compressive sensing (CS) theory demonstrates that, a signal can be reconstructed with high probability when it exhibits sparsity in some domain. Most of the conventional CS recovery approaches, however, exploited a set of fixed bases (e.g. DCT, wavelet and gradient domain) for the entirety of a signal, which are irrespective of the non-stationarity of natural signals and cannot achieve high enough degree of sparsity, thus resulting in poor CS recovery performance. In this paper, we propose a new framework for image compressive sensing recovery using adaptively learned sparsifying basis via L0 minimization. The intrinsic sparsity of natural images is enforced substantially by sparsely representing overlapped image patches using the adaptively learned sparsifying basis in the form of L0 norm, greatly reducing blocking artifacts and confining the CS solution space. To make our proposed scheme tractable and robust, a split Bregman iteration based technique is developed to solve the non-convex L0 minimization problem efficiently. Experimental results on a wide range of natural images for CS recovery have shown that our proposed algorithm achieves significant performance improvements over many current state-of-the-art schemes and exhibits good convergence property. & 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Compressive Video Sensing via Dictionary Learning and Forward Prediction
In this paper, we propose a new framework for compressive video sensing (CVS) that exploits the inherent spatial and temporal redundancies of a video sequence, effectively. The proposed method splits the video sequence into the key and non-key frames followed by dividing each frame into the small nonoverlapping blocks of equal size. At the decoder side, the key frames are reconstructed using ad...
متن کاملCompressed sensing MRI with combined sparsifying transforms and smoothed l0 norm minimization
Undersampling the k-space is an efficient way to speed up the magnetic resonance imaging (MRI). Recently emerged compressed sensing MRI shows promising results. However, most of them only enforce the sparsity of images in single transform, e.g. total variation, wavelet, etc. In this paper, based on the principle of basis pursuit, we propose a new framework to combine sparsifying transforms in c...
متن کاملDictionary and Image Recovery from Incomplete and Random Measurements
This paper tackles algorithmic and theoretical aspects of dictionary learning from incomplete and random blockwise image measurements and the performance of the adaptive dictionary for sparse image recovery. This problem is related to blind compressed sensing in which the sparsifying dictionary or basis is viewed as an unknown variable and subject to estimation during sparse recovery. However, ...
متن کاملTRZASKO AND MANDUCA: HIGHLY UNDERSAMPLED MAGNETIC RESONANCE IMAGE RECONSTRUCTION VIA HOMOTOPIC L0-MINIMIZATION 1 Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic L0-Minimization
In clinical Magnetic Resonance Imaging (MRI), any reduction in scan time offers a number of potential benefits ranging from high-temporal-rate observation of physiological processes to improvements in patient comfort. Following recent developments in Compressive Sensing (CS) theory, several authors have demonstrated that certain classes of MR images which possess sparse representations in some ...
متن کاملA Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI
INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 103 شماره
صفحات -
تاریخ انتشار 2014